• TheDudeV2@lemmy.caOP
    link
    fedilink
    arrow-up
    19
    ·
    1 year ago

    This is very preliminary data, and we shouldn’t get overexcited about the possible implications of this discovery, but I think it’s fascinating.

    • TheDudeV2@lemmy.caOP
      link
      fedilink
      arrow-up
      11
      ·
      1 year ago

      I agree that, if the detection is accurate and correct, it could be produced through non-biological processes, but, on earth, the molecule in question is known to be produced solely by biological processes. So when you say “easily”, I must disagree.

    • CanadaPlus@lemmy.sdf.org
      link
      fedilink
      arrow-up
      8
      ·
      edit-2
      1 year ago

      Yep. Especially since this is an exotic kind of planet around a very different star. Then again, if abiogenesis is easy you’d expect this planet to have extensive microbial life. It’s a 2.5Gyr old system.

  • Romanmir@lemmy.today
    link
    fedilink
    English
    arrow-up
    5
    ·
    edit-2
    1 year ago

    CHEKOV: We’ve picked up a minor energy flux reading on one dynoscanner.

    TERRELL: Damn! Are you sure? Maybe the scanner’s out of adjustment.

  • CanadaPlus@lemmy.sdf.org
    link
    fedilink
    arrow-up
    1
    ·
    edit-2
    1 year ago

    In case anyone’s still looking, here’s the paper, I finally got around to looking at it.

    They didn’t just find DMS, they found a buttload of DMS. Like, it’s the third strongest signature they detected after the methane and CO2. On Earth it’s measured in parts per trillion.

    Here’s the guy’s previous modeling of the chemistry of such a planet, in case like me you’re wondering about the source of the details of the whole CO2/CO/CH4 situation.